quarta-feira, 3 de abril de 2019



teoria cinética dos gases no SDC Graceli.





De acordo com a teoria cinética dos gases um gás ideal é constituído por um grande número de pequenas partículas (átomos ou moléculas), que estão em constante e aleatório movimento. Essas partículas que se deslocam rapidamente e colidem constantemente umas com as outras e com as paredes do recipiente que contém o gás. O volumeocupado pelo gás é muito maior do que a soma dos volumes das partículas, de modo que a magnitude das forças intermoleculares é muito pequena.[1] Nesse modelo teórico, pelo fato de encontrarmos um número muito grande de partículas por unidade de volume (1020 partículas por cm³)(sob condição de gás ideal), existem hipóteses impostas que representam o que deve acontecer, em média, com as partículas do gás.[2][3]

    História

    Hydrodynamica - capa frontal
    Em 1738, o físico matemático Daniel Bernoulli, publicou o livro Hydrodynamica, que lançou a base para a teoria cinética dos gases. Nesse trabalho, Bernoulli posicionou seu argumento, ainda sólido até a atualidade, que os gases consistem em um grande número de moléculas se movendo em todas as direções, onde elas colidem entre si e esse impacto causa uma pressão na superfície de contato que podemos sentir. Como exemplos, podemos citar o que nós sentimos como calor, que corresponde simplesmente a energia cinética do seu movimento. A teoria não foi imediatamente aceita, em parte por causa da conservação de energia que não estava bem estabelecida, e ainda, não era óbvio aos físicos que as colisões entre as moléculas poderiam ser perfeitamente elásticas.
    Outros pioneiros da teoria cinética foram Mikhail Lomonosov (1747),[4] Georges-Louis Le Sage (1818),[5] John Herapath (1816)[6] e John James Waterston (1843),[7] que ligavam suas pesquisas com o desenvolvimento de explicações mecânicas da gravitação. Em 1856 August Krönig (provavelmente depois de ler um artigo de Waterston) criou um modelo simples de gás-cinético, que considerava apenas o movimento de translação das partículas. [8]
    Em 1857 Rudolf Clausius, de acordo com suas próprias palavras, independentemente de Krönig, desenvolveu uma similar, porém muito mais sofisticada versão da teoria que incluia o movimento translacional das moléculas, e, ao contrário de Krönig, incluia também o movimento rotacional e vibracional das moléculas. Ele introduziu, neste mesmo trabalho, o conceito de livre caminho médio de uma partícula. [9]
    Em 1859, após ler um artigo de Clausius, James Clerk Maxwell formulou a distribuição de Maxwell de velocidades moleculares, que deu a proporção de moléculas com uma determinada velocidade em um alcance específico. Esta foi a primeira lei estatística na física. [10] Em um de seus artigos Maxwell afirma: "nos é dito que um 'átomo' é um ponto material, envolvido e cercado por 'forças potenciais', e quando uma 'molécula flutuante' chocam-se contra um corpo sólido em sucessão constante causa a chamada pressão do ar e dos outros gases."[11]
    Em 1871, Ludwig Boltzmann generalizou a realização de Maxwell e formulou a distribuição de Maxwell-Boltzmann. Além disso, a conexão logaritmica entre entropia e probabilidadefoi estabelecida pela primeira vez por ele.
    No início do século XX, no entanto, átomos eram considerados por vários físicos estruturas puramente hipotéticas. Um marco importante foram os artigos de Albert Einstein(1905)[12] e Marian Smoluchowski (1906)[13] sobre o movimento browniano, que sucedeu certas previsões quantitativas precisas baseadas na teoria cinética.

    Princípios[editar | editar código-fonte]

    A teoria cinética dos gases pode ser aplicada apenas se algumas suposições forem feitas. A seguir os postulados da teoria cinética, a respeito dos gases perfeitos:
    • As moléculas estão se movendo em todas as direções.[2]
    • As moléculas se movem em linha reta entre as colisões.[2]
    • As colisões são perfeitamente elásticas.[2]
    • O diâmetro das moléculas é desprezível em comparação com a distância percorrida entre as colisões.[2]
    • Forças intermoleculares são desprezíveis, exceto durante as colisões.[2]
    • O tempo gasto durante a colisão é muito menor que o tempo gasto entre as colisões.[2]
    • Todos os gases são constituídos por um enorme número de esferas perfeitas, rígidas e extremamente pequenas.
    • O volume total ocupado pelas moléculas é desprezível se comparado ao volume do recipiente.
    • Estão constantemente em movimento aleatório e colidindo entre si e com as paredes do recipiente.
    • Quando as moléculas gasosas colidem com a parede do recipiente ocorre a transferência de momento, diretamente relacionado com a pressão do gás.
    • A energia cinética dos gases das moléculas é diretamente proporcional a temperatura do gás em kelvin.

    Uma visão molecular de pressão e temperatura[3][editar | editar código-fonte]

    Sejam n moles de um gás ideal armazenados numa caixa cúbica de aresta L e volume V, cujas paredes são mantidas à temperatura T.
    As moléculas na caixa se movem em todas as direções com velocidades variáveis, colidindo umas com as outras e com as paredes da caixa. Consideram-se apenas as suas colisões elásticas com as paredes da caixa. (Por enquanto as colisões entre as moléculas podem ser ignoradas.)
    A molécula tem massa m e velocidade v.
    Como as colisões entre a molécula e a parede são elásticas, quando a moléculas choca-se com a parede perpendicular ao eixo de coordenadas x (da caixa cúbica), a componente x da velocidade inverte seu sentido sem alterar seu módulo, enquanto as outras componentes permanecem inalteradas. Isto significa que a única mudança no momento linear da partícula é na direção x, e seu valor é
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Logo, o momento linear  transmitido à parede pela molécula durante a colisão é (+2mvx).
    O tempo  entre as colisões é o tempo que a molécula leva para ir até a parede oposta e voltar (distância = 2L) com velocidade vx. Logo, a partícula choca-se com um lado específico da parede uma vez em cada
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    (Nota-se que este resultado é válido mesmo que a molécula se choque com qualquer das outras paredes durante o caminho, pois estas são paralelas ao eixo do x e, assim, não podem mudar vx.)
    Deste modo, a taxa com que o momento é transmitido à parede sombreada por esta única molécula é
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Da segunda lei de Newton (F = dp/dt) a taxa com que o momento é transmitido à parede é a força atuando sobre esta. Para encontrar esta força, deve-se somar as contribuições de todas as outras moléculas que atingem a parede, levando em conta a possibilidade de que todas tenham velocidades diferentes. Dividindo a força total pela área da parede L², tem-se a pressão p sobre ela.
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Onde N é o número de moléculas na caixa.
    Como N = nNA, onde NA é o número de Avogadro, há nNA termos no segundo parênteses da equação acima. Assim podemos substituir esta quantidade por  , onde  é o valor médio do quadrado da componente x de todas as velocidades moleculares. A equações pode ser reescrita então
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Mas mNA é a massa molar M do gás. Além disso, L³ é o volume da caixa, logo,
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Para qualquer molécula, v² = vx² + vy² + vz². Como há muitas e como se movem em direções aleatórias, os valores médios dos quadrados das componentes de suas velocidades são iguais, logo,  , assim
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A raiz quadrada de  é uma espécie de velocidade média, chamada de velocidade média quadrática das moléculas, vrms.
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A equação acima ilustra bem o espírito da teoria cinética. Ela mostra que a pressão de um gás p (uma quantidade puramente macroscópica) depende da velocidade das moléculas (uma quantidade puramente microscópica). Podemos relacionar a equação mostrada com a equação do gás ideal (pV = nRT) (sendo R a constante dos gases).
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Energia cinética de translação[3][editar | editar código-fonte]

    Considera-se uma molécula em movimento dentro de uma caixa cúbica, sua velocidade muda (em módulo) quando colide com outras moléculas. A energia cinética de translação da molécula em qualquer instante é  . A energia cinética de translação média, onde tomamos a média sobre o tempo em que observamos a molécula, é
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Onde é feita a suposição de que a velocidade média da molécula é a mesma que a velocidade média de todas as moléculas em qualquer instante. (Esta suposição é apropriada desde que a energia total do gás permaneça constante e que a molécula seja observada por um tempo suficientemente longo.)
    Dado que  podemos reescrever a equação e verificar que
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Mas  , a massa molar dividida pela massa de uma molécula, é o número de Avogadro NA, assim
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Que pode ser reescrito como
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A constante k, chamada de constante de Boltzmann, é a razão entre a dos gases perfeitos R e o número de Avogadro NA.
    Seu valor é












    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].